Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Atmosphere ; 14(4):630, 2023.
Article in English | ProQuest Central | ID: covidwho-2306097

ABSTRACT

To avoid the spread of COVID-19, China has implemented strict lockdown policies and control measures, resulting in a dramatic decrease in air pollution and improved air quality. In this study, the air quality model WRF-Chem and the latest MEIC2019 and MEIC2020 anthropogenic emission inventories were used to simulate the air quality during the COVID-19 lockdown in 2020 and the same period in 2019. By designing different emission scenarios, this study explored the impact of the COVID-19 lockdown on the concentration of air pollutants emitted by different sectors (industrial sector and transportation sector) in Nanjing for the first time. The results indicate that influenced by the COVID-19 lockdown policies, compared with the same period in 2019, the concentrations of PM2.5, PM10, and NO2 in Nanjing decreased by 15%, 17.1%, and 20.3%, respectively, while the concentration of O3 increased by 45.1% in comparison;the concentrations of PM2.5, PM10 and NO2 emitted by industrial sector decreased by 30.7%, 30.8% and 14.0% respectively;the concentrations of PM2.5, PM10 and NO2 emitted by transportation sector decreased by 15.6%, 15.7% and 26.2% respectively. The COVID-19 lockdown has a greater impact on the concentrations of PM2.5 and PM10 emitted by the industrial sector, while the impact on air pollutants emitted by the transportation sector is more reflected in the concentration of NO2. This study provides some theoretical basis for the treatment of air pollutants in different departments in Nanjing.

2.
Bulletin of the American Meteorological Society ; 104(3):623-630, 2023.
Article in English | ProQuest Central | ID: covidwho-2298113

ABSTRACT

Presentations spanned a range of applications: the public health impacts of poor air quality and environmental justice;greenhouse gas measuring, monitoring, reporting, and verification (GHG MMRV);stratospheric ozone monitoring;and various applications of satellite observations to improve models, including data assimilation in global Earth system models. The combination of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and NO2 retrievals can improve confidence in emissions inventories and model performance, and together these data products would be of use in future air quality management tools. The ability to retrieve additional trace gases (e.g., ethane, isoprene, and ammonia) in the thermal IR along with those measured in the UV–Vis–NIR region would be extremely useful for air quality applications, including source apportionment analysis (e.g., for oil/natural gas extraction, biogenic, and agricultural sources). Ground-level ozone is one of six criteria pollutants for which the EPA sets National Ambient Air Quality Standards (NAAQS) to protect against human health and welfare effects.

3.
Atmosphere ; 14(2):234, 2023.
Article in English | ProQuest Central | ID: covidwho-2260661

ABSTRACT

We updated the anthropogenic emissions inventory in NOAA's operational Global Ensemble Forecast for Aerosols (GEFS-Aerosols) to improve the model's prediction of aerosol optical depth (AOD). We used a methodology to quickly update the pivotal global anthropogenic sulfur dioxide (SO2) emissions using a speciated AOD bias-scaling method. The AOD bias-scaling method is based on the latest model predictions compared to NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2). The model bias was subsequently applied to the CEDS 2019 SO2 emissions for adjustment. The monthly mean GEFS-Aerosols AOD predictions were evaluated against a suite of satellite observations (e.g., MISR, VIIRS, and MODIS), ground-based AERONET observations, and the International Cooperative for Aerosol Prediction (ICAP) ensemble results. The results show that transitioning from CEDS 2014 to CEDS 2019 emissions data led to a significant improvement in the operational GEFS-Aerosols model performance, and applying the bias-scaled SO2 emissions could further improve global AOD distributions. The biases of the simulated AODs against the observed AODs varied with observation type and seasons by a factor of 3~13 and 2~10, respectively. The global AOD distributions showed that the differences in the simulations against ICAP, MISR, VIIRS, and MODIS were the largest in March–May (MAM) and the smallest in December–February (DJF). When evaluating against the ground-truth AERONET data, the bias-scaling methods improved the global seasonal correlation (r), Index of Agreement (IOA), and mean biases, except for the MAM season, when the negative regional biases were exacerbated compared to the positive regional biases. The effect of bias-scaling had the most beneficial impact on model performance in the regions dominated by anthropogenic emissions, such as East Asia. However, it showed less improvement in other areas impacted by the greater relative transport of natural emissions sources, such as India. The accuracies of the reference observation or assimilation data for the adjusted inputs and the model physics for outputs, and the selection of regions with less seasonal emissions of natural aerosols determine the success of the bias-scaling methods. A companion study on emission scaling of anthropogenic absorbing aerosols needs further improved aerosol prediction.

4.
Atmospheric Chemistry and Physics ; 23(4):2315-2330, 2023.
Article in English | ProQuest Central | ID: covidwho-2255336

ABSTRACT

Fluxes of nitrogen oxides (NOx=NO+NO2) and carbon dioxide (CO2) were measured using eddy covariance at the British Telecommunications (BT) Tower in central London during the coronavirus pandemic. Comparing fluxes to those measured in 2017 prior to the pandemic restrictions and the introduction of the Ultra-Low Emissions Zone (ULEZ) highlighted a 73 % reduction in NOx emissions between the two periods but only a 20 % reduction in CO2 emissions and a 32 % reduction in traffic load. Use of a footprint model and the London Atmospheric Emissions Inventory (LAEI) identified transport and heat and power generation to be the two dominant sources of NOx and CO2 but with significantly different relative contributions for each species. Application of external constraints on NOx and CO2 emissions allowed the reductions in the different sources to be untangled, identifying that transport NOx emissions had reduced by >73 % since 2017. This was attributed in part to the success of air quality policy in central London but crucially due to the substantial reduction in congestion that resulted from pandemic-reduced mobility. Spatial mapping of the fluxes suggests that central London was dominated by point source heat and power generation emissions during the period of reduced mobility. This will have important implications on future air quality policy for NO2 which, until now, has been primarily focused on the emissions from diesel exhausts.

5.
Earth System Science Data Discussions ; : 1-30, 2023.
Article in English | Academic Search Complete | ID: covidwho-2288101

ABSTRACT

Precise and continuous monitoring on long-term carbon dioxide (CO2) and methane (CH4) over the globe is of great importance, which can help study global warming and achieve the goal of carbon neutrality. Nevertheless, the available observations of CO2 and CH4 from satellites are generally sparse, and current fusion methods to reconstruct their long-term values on a global scale are few. To address this problem, we propose a novel spatiotemporally self-supervised fusion method to establish long-term daily seamless XCO2 and XCH4 products from 2010 to 2020 over the globe at grids of 0.25°. A total of three datasets are applied in our study, including GOSAT, OCO-2, and CAMS-EGG4. Attributed to the significant sparsity of data from GOSAT and OCO-2, the spatiotemporal Discrete Cosine Transform is considered for our fusion task. Validation results show that the proposed method achieves a satisfactory accuracy, with the σ (R²) of ~ 1.18 ppm (> 0.9) and 11.3 ppb (0.9) for XCO2 and XCH4 against TCCON measurements, respectively. Overall, the performance of fused results distinctly exceeds that of CAMS-EGG4, which is also superior or close to those of GOSAT and OCO-2. Especially, our fusion method can effectively correct the large biases in CAMS-EGG4 due to the issues from assimilation data, such as the unadjusted anthropogenic emission inventories for COVID-19 lockdowns in 2020. Moreover, the fused results present coincident spatial patterns with GOSAT and OCO-2, which accurately display the long-term and seasonal changes of globally distributed XCO2 and XCH4. [ABSTRACT FROM AUTHOR] Copyright of Earth System Science Data Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

6.
Geoscientific Model Development Discussions ; : 1-33, 2022.
Article in English | Academic Search Complete | ID: covidwho-2202609

ABSTRACT

NOx is an important primary air pollutant, dominantly produced by anthropogenic, mostly combustion based, activities from sectors such as industry, traffic and transport. NOx is directly linked to negative health and environmental impacts. Currently, the construction of emission inventories to keep track of NOx emissions is based on official national reported emissions and prOxies such as activity data as well as direct measurements. The effort to properly construct an accurate inventory is significant and time consuming which causes a reporting offset between one and five years with respect to the current date. Next to this temporal lag difficulties in composed inventories can arise from legislative and protocol differences between countries and over time in reporting of emissions. Satellite based atmospheric composition measurements provide a unique opportunity to fill this gap and independently estimate emissions on a large scale in a consistent, transparent and comprehensible way. They give the possibility to check for compliance with emission reduction targets in a timely manner as well as to observe rapid emission reductions such as experienced during the COVID-19 lock-downs. In this study we apply a consistent methodology to derive NOx emissions over Germany for the years of 2019-2021. For the years where reporting is available differences between satellite estimates and inventory totals were within 100kt. The large reduction of NOx emissions related to the COVID-19 lock-downs were observed in both the inventory and satellite derived emissions. The recent projections for the inventory emissions pointed to a recovery of the emissions towards pre-COVID19 levels this increase was not observed. While emissions from the larger power-plants did rebound to earlier levels, others sectors such as road transport and shipping did not and could be linked to a reduction in the number of heavier transport trucks. This again illustrates the value of having a consistent satellite based methodology for faster projections to guide and check the conventional emission inventory reporting. The method described in this manuscript also meet the demand for independent verification of the official emission inventories, which will enable inventory compilers to detect potentially problematic reporting issues. Transparency and comparability, two key values for emission reporting, are thus bolstered by this technique. [ FROM AUTHOR]

7.
Atmosphere ; 13(12):1984, 2022.
Article in English | Academic Search Complete | ID: covidwho-2199713

ABSTRACT

Vehicle mileage is one of the key parameters for accurately evaluating vehicle emissions and energy consumption. With the support of the national annual vehicle emission inspection networked platform in China, this study used big data methods to analyze the activity level characteristics of the light-duty passenger vehicle fleet with the highest ownership proportion. We found that the annual mileage of vehicles does not decay significantly with the increase in vehicle age, and the mileage of vehicles is relatively low in the first few years due to the run-in period, among other reasons. This study indicated that the average mileage of the private passenger car fleet is 10,300 km/yr and that of the taxi fleet was 80,000 km/yr in China in 2019, and the annual mileage dropped by 22% in 2020 due to the pandemic. Based on the vehicle mileage characteristics, the emission inventory of major pollutants from light-duty passenger vehicles in China for 2010–2020 was able to be updated, which will provide important data support for more accurate environmental and climate benefit assessments in the future. [ FROM AUTHOR]

8.
Atmospheric Chemistry and Physics ; 22(16):10875-10900, 2022.
Article in English | ProQuest Central | ID: covidwho-2025096

ABSTRACT

The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable source of information to monitor the NOx emissions that adversely affect air quality. We conduct a series of experiments using a 4×4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April–September 2019 in eastern Texas to evaluate the multiple challenges that arise from reconciling the NOx emissions in model simulations with TROPOMI. We find an increase in NO2 (+17 % in urban areas) when transitioning from the TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in eastern Texas, with the greatest difference (+25 %) in the city centers and smaller differences (+5 %) in less polluted areas. We find that lightningNOx emissions in the model simulation contribute up to 24 % of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas urban areas. NOx emissions inventories, when using locally resolved inputs, agree with NOx emissions derived from TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances, with a small NOx underestimate in Dallas–Fort Worth (-13 %) and Houston (-20 %). In the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements, i.e., the satellite NO2 is consistently smaller by 40 %–60 % than the modeled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty distinguishingNO2 attributed to power plants from the background NO2 concentrations in Texas – an area with atmospheric conditions that cause short NO2 lifetimes. Second, the NOx/NO2 ratio in the model may be underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 column information with formaldehyde (HCHO) column information. We find modest low biases in the model relative to TROPOMI HCHO, with -9 % underestimate in eastern Texas and -21 % in areas of central Texas with lower biogenic volatile organic compound (VOC) emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx limited almost everywhere in the domain, except along the Houston Ship Channel, near the Dallas/Fort Worth International airport, and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning hours that TROPOMI cannot observe and would be well-suited for analysis with NO2 and HCHO from the upcoming TEMPO (Tropospheric Emissions: Monitoring Pollution) mission. This study highlights that TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations.

9.
Russian Meteorology and Hydrology ; 47(3):174-182, 2022.
Article in English | ProQuest Central | ID: covidwho-1910961

ABSTRACT

The results of numerical modeling of air pollution using CHIMERE and COSMO-ART chemical transport models are presented. The modeling was performed according to the scenarios of the 50–60% reduction of emissions from anthropogenic sources in the Moscow region during the period of March–July 2020. Scenario calculations of pollutant concentrations were compared with baseline simulations using regionally adapted inventory of anthropogenic pollutant emissions to the atmosphere. The most significant decrease in the concentrations of NO2 and CO was reproduced by the models when emissions from two sectoral sources (vehicles and nonindustrial plants) were reduced. The PM10 drop was mostly influenced by the reduction of emissions from industrial combustion. With the total reduction of emissions from anthropogenic sources as compared to the baseline calculations, the pollutant concentration decreased by 44–54% for NO2, by 38–44% for CO, and by 26–39% for PM10. This generally coincides with the quantitative estimates of the pollution level drop obtained by other authors. The greatest effect of reducing pollutant emissions into the atmosphere was found during the episodes of adverse weather conditions for air purification, when the simulated and observed pollution level increases by 3–5 times as compared to the conditions of intense pollutant dispersion.

10.
Nanjing Xinxi Gongcheng Daxue Xuebao ; 14(1):40-49, 2022.
Article in Chinese | ProQuest Central | ID: covidwho-1811420

ABSTRACT

The atmospheric CO2 concentrations are mainly influenced by regional sinks/sources and atmospheric transport processes, thus observations in urban area contain essential information of anthropogenic CO2 emissions. To investigate the effect of COVID-19 on atmospheric CO2 concentration and its anthropogenic emissions, this study chose Nanchang city as the study area and used a priori emission inventory with WRF-STILT (Stochastic Time-Inverted Lagrangian Transport) atmospheric transport model to simulate hourly CO2 concentrations from January 24th to April 30th, 2020. In accordance with the government measures to control COVID-19 epidemic, the whole study period was divided into two periods of Level 1 period (from January 24th to March 11th) and Level 2 period (from March 12th to April 30th). Results indicate the model can well capture hourly variations of CO2 concentration, but it overestimated nighttime concentrations due to the negligence of emission source height. During Level 1 period, the observed and simulated afternoon (12:00-18:00) CO2 mole fractions were 433. 63×10-6 and 438. 22×10-6, respectively,in which the anthropogenic emissions were 21.9% overestimated by simulation compared with observations. While during Level 2 period, the observation and simulation were very close as 432. 06×10-6 and 432. 24 × 10-6. The above comparisons indicate that the CO2 emissions can be represented by a priori CO2 emission inventory in Level 2 period, but was overestimated by 21.9% in Level 1 period, and the discrepancy was mainly due to government measures to control COVID-19 pandemic during this period. Besides, the average biological NEE enhancements were generally lower than 2×10-6, indicating a small contribution compared with anthropogenic emissions. The higher PBLH (Planetary Boundary Layer Height) in Level 2 period also offset the enhancement in CO2 emissions, which was also the main reason for the close observations during two periods. Our findings can provide scientific method supports for greenhouse gas emission inversions at urban scale.

11.
Atmospheric Chemistry and Physics ; 22(7):4615-4703, 2022.
Article in English | ProQuest Central | ID: covidwho-1786220

ABSTRACT

This review provides a community's perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy.

12.
Atmospheric Chemistry and Physics ; 22(7):4471-4489, 2022.
Article in English | ProQuest Central | ID: covidwho-1780191

ABSTRACT

We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements, and chemistry-transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 (Infrared Atmospheric Sounding Interferometer + Global Ozone Monitoring Experiment 2) multispectral synergism, which provides better sensitivity to near-surface ozone pollution. These observations are mainly analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in central Europe and northern Italy, as well as some other hotspots, which are typically characterized by volatile organic compound (VOC)-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb, and the same standard deviation and range of variability). An average difference of ∼ 8 ppb between the two observational datasets is observed, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude over land and averaging kernels reaching the middle troposphere over ocean).For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for subtracting the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry-transport model simulations using the meteorological fields of each year and identical emission inventories. Using adjustments adapted for the altitude and sensitivity of each observation, both datasets show consistent estimates of the influence of lockdown emission reduction. They both show lockdown-associated ozone enhancements in hotspots over central Europe and northern Italy, with a reduced amplitude with respect to the total changes observed between the 2 years and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally provide the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions, and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozone sonde measurements in the free troposphere.These observational assessments are compared with model-only estimations, using the CHIMERE chemistry-transport model. Whereas a general qualitative consistency of positive and negative ozone anomalies is observed with respect to observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational datasets, both for enhancements and decreases of ozone. Moreover, a significant ozone decrease observed at a large hemispheric scale is not simulated since the modelling domain is the European continent. As simulations only consider the troposphere, the influence from stratospheric ozone is also missing. Sensitivity analyses also show an important role of vertical mixing of atmospheric constituents, which depends on the meteorological fields used in the simulation and significantly modify the amplitude of the changes of ozone pollution during the lockdown.

13.
Atmospheric Chemistry and Physics ; 22(4):2745-2767, 2022.
Article in English | ProQuest Central | ID: covidwho-1716002

ABSTRACT

Satellite observations of the high-resolution TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor can be used to observe nitrogen dioxide (NO2) at city scales to quantify short time variability of nitrogen oxide (NOx) emissions and lifetimes on a daily and seasonal basis. In this study, 2 years of TROPOMI tropospheric NO2 columns, having a spatial resolution of up to 3.5 km × 5.5 km, have been analyzed together with wind and ozone data. NOx lifetimes and emission fluxes are estimated for 50 different NOx sources comprising cities, isolated power plants, industrial regions, oil fields, and regions with a mix of sources distributed around the world. The retrieved NOx emissions are in agreement with other TROPOMI-based estimates and reproduce the variability seen in power plant stack measurements but are in general lower than the analyzed stack measurements and emission inventory results. Separation into seasons shows a clear seasonal dependence of NOx emissions with in general the highest emissions during winter, except for isolated power plants and especially sources in hot desert climates, where the opposite is found. The NOx lifetime shows a systematic latitudinal dependence with an increase in lifetime from 2 to 8 h with latitude but only a weak seasonal dependence. For most of the 50 sources including the city of Wuhan in China, a clear weekly pattern of NOx emissions is found, with weekend-to-weekday ratios of up to 0.5 but with a high variability for the different locations. During the Covid-19 lockdown period in 2020, strong reductions in the NOx emissions were observed for New Delhi, Buenos Aires, and Madrid.

14.
Agriculture ; 12(1):34, 2022.
Article in English | ProQuest Central | ID: covidwho-1634987

ABSTRACT

In 2020 Ireland missed its EU climate emissions target and without additional measures will not be on the right trajectory towards decarbonisation in the longer 2030 and 2050 challenges. Agriculture remains the single most significant contributor to overall emissions in Ireland. In the absence of effective mitigating strategies, agricultural emissions have continued to rise. The purpose of the review is to explore current research conducted in Ireland regarding environmental modelling within agriculture to identify research gap areas for further research. 10 models were selected and reviewed regarding modelling carbon emissions from agriculture in Ireland, the GAINS (Air pollution Interactions and Synergies) model used for air pollutants, the JRC-EU-TIMES, (Joint Research Council-European Union-The Integrated MARKAL-EFOM System) and the Irish TIMES model used for energy, the integrated modelling project Ireland (GAINS & TIMES), the environmental, economic model ENV-Linkages and ENV-Growth along with the IE3 and AGRI-I models. The review found that data on greenhouse gas emissions for 2019 reveals that emissions can be efficiently lowered if the right initiatives are taken. More precise emission factors and adaptable inventories are urgently needed to improve national CO2 reporting and minimise the agricultural sector’s emissions profile in Ireland. The Climate Action Delivery Act is a centrally driven monitoring and reporting system for climate action delivery that will help in determining optimal decarbonisation from agriculture in Ireland. Multi-modelling approaches will give a better understanding of the technology pathways that will be required to meet decarbonisation ambitions.

SELECTION OF CITATIONS
SEARCH DETAIL